充要条件就是充分必要条件,意思是说,如果能从命题p推出命题q,而且也能从命题q推出命题p,则称p是q的充分必要条件,且q也是p的充分必要条件。如果有事物情况A,则必然有事物情况B;如果有事物情况B,则必然有事物情况A,那么B就是A的充分必要条件(简称:充要条件),反之亦然。

定义:如果有事物情况A,则必然有事物情况B;如果没有事物情况A,则必然没有事物情况B,A就是B的充分必要条件。

充分必要条件是逻辑学在研究假言命题及假言推理时引出的。

陈述某一事物情况是另一件事物情况的充分必要条件的假言命题叫做充分必要条件假言命题。充分必要条件假言命题的一般形式是:p当且仅当q。符号为:p←→q(读作“p等值q”)。

例如:“三角形等边当且仅当三角形等角。”是一个充分必要条件假言命题。

根据充分必要条件假言命题的逻辑性质进行的推理叫充分必要条件假言推理。

充分条件和必要条件的区别

必要条件是指必须具备的重要条件,而充分条件是指一定能够保证结果出现的条件;必要条件可以由结果推出条件,而充分条件是由条件一定能够推出结果,但由结果推出的不仅仅是这个条件,还有别的存在。

推荐内容